Formules courantes

Formules utilisées dans nos calculs et quelques autres

Dans toutes les formules le signe * est le signe de multiplication
Certaines formules ont été écrite en caractères mathématiques , d'autres non , cette présentation pourra s'améliorer par la suite .

Le séparateur décimal est le point et non la virgule

La dite remarque s'applique à la totalité du site

 Vous pouvez disposer d'un logiciel qui calculera pour vous toutes ces formules

Vitesse/Hauteur
Une formule très courante en hydraulique est la relation vitesse hauteur
elle donne la vitesse de l'eau qui sort d'un orifice ou la pression amont évaluée en hauteur d'eau est H



H est en mètres ,  V en mètres/sec et g est l'accélération de la pesanteur

Equations aux dimensions (facultatif !)

Les curieux pourront chercher à savoir ce qui se cache derrière les formules
Les unités primaires du système légal sont le mètre , la masse et la seconde

Dans la formule ci dessus g est une accélération , homogène à une longueur divisée par le carré d'un temps
g est homogène à L T-2
2gh sera donc homogène à L2 T-2
V sera homogène à L T-1 qui est la racine du précédent

La vérification de l'homogénéité permettra d'éviter des erreurs de calcul grossières si on s'aventure seul dans les calculs ....


Vannes
Débit d'une vanne simple

Comme formule bien approchée nous prendrons
S étant la section de  passage

h=charge=différence de hauteur entre le niveau haut et le dessus de la lame d'eau stabilisée sortant de la vanne , en mètres
La section est en m2
Q est en m3/seconde
K varie de 3.2 à 3.0 selon les dimensions et l'ouverture de la vanne
Attention : il y a lieu de bien choisir la valeur de h
qui correspond à la surface libre de la veine


Exemple  vanne de largeur 1.2  mètres
La hauteur d'eau en amont est 0.60

Déversoir

Très utilisé pour la mesure des débits partout ou il est possible d'en  l'installer un
La formule la plus simple

Q =  0.41 * B * h * racine(2gh)

h est la charge en m.  (voir dessin) elle doit être mesurée depuis loin à l'amont 
B est la largeur en m.
Q est en m3/s
Cette formule ne fait pas intervenir la profondeur p , aussi est elle approximative

Un calcul plus précis utilise le paramètre p

Mon logiciel utilise la célèbre formule de Rehbock :

Détails avancés

Puissance d'une chute
 

La puissance théorique valable pour toute installation est donnée par la formule 

P = 0.01333 * Q * H en CV     ou pour employer des unités proches des légales :
P = 9.81 * Q * H en watts

Q  est le débit de la chute en litres/seconde

Si Q est en m3/sec alors
    P = 13.33 * Q * H en CV     ou pour employer des unités
proches des légales :
    P = 9.81 * Q * H en kilowatts
C'est la plus classique que l'on traduit souvent en tenant compte d'un certain rendement global

                            Pu  = 7 * Q * H      (Pu puissance utile en  kW   Q m3/s  H  mètres)
                            Ex   H = 10 m   Q =3 m3/s  Pu = 210 kW aux bornes de sortie de l'alternateur

Pour les puristes la formule rigoureuse en légales  S.I. est :
  P=
v * g *  Q * H en watts avec g = 9.81 m/s/s  ,   v =  1000 kg/m3 , Q en m3/s , H en m

H est la hauteur de chute nette en mètres 
Pour avoir la puissance réelle il faut multiplier par le rendement , coefficient < 1
Calculs très rapides avec mon logiciel !

Choc d'un jet sur une surface fixe ou mobile


Quand un jet d'eau animé d'une vitesse V rencontre une surface à angle droit il exerce sur cette
 surface  une force 

F = v *Q * (V-v)
F force en Newtons
Q débit en m3 /seconde
V et v en m/s
 
v
étant  la masse spécifique de l'eau en kg/m3 soit 1000
v vitesse de recul de la plaque dans la direction du jet
Pour ceux qui s'intéressent aux équations aux dimensions
F est homogène à  M L-3    L3 T-1    L T-1   soit  M L T-2  (produit masse accélération)
Cette formule peut aussi se déduire de l'équation F=M * (V-v)  , équation de  la percussion obtenue par la prise en compte des quantités de mouvement .. Dans ce cas M est la masse par unité de temps. 

Exemple 
V=60 m/s
Q =0.6 m3/s
Si v=0 (plaque immobile) on trouve F=36000 N
Cet exemple correspond à une chute d'eau avec H=183.5  m et Q =0.6 m3/s
La puissance théorique de cette chute (avec rendement unité) est de 1080000 watts (1080  kW)
C'est cette même valeur que l'on retrouve si on considère l'énergie cinétique du jet , soit 1/2 M * V * V 

Cas de la puissance

Pour une plaque plane :
Si la surface est immobile celle ci ne récupère aucune énergie ,  mais l'eau conserve une énergie propre en quittant la plaque
Dans le cas de la plaque immobile , une question qui se pose est de savoir quelle est la perte d'énergie due au choc.
Je n'ai pas de trouvé de réponse à ce problème complexe

Si v n'est pas nul la puissance  récupérée est F * v
Si enfin v= V/2 la puissance passe par un  maximum
soit donc P=
r *Q * V * V / 4
La formule complète est  P=
r *Q * v * (V -v )
P est nulle pour v=0 et v=V
Elle est max comme déja dit pour v = V/2 car  alors  la dérivée dP/dv est nulle .
Il s'agit de la puissance récupérable par une plaque plane .

En reprenant notre calcul avec v=V/2 on trouve  une puissance de 540000 watts , moitié de la puissance totale .

Cette récupération ( en théorie,  mais vérifiable par des expériences correctes ) en fonction de la forme est donc :

     La moitié de l'énergie du jet pour une plaque plane rencontrant le jet  perpendiculairement

     La totalité  (en théorie ) pour une surface courbe renvoyant l'eau en sens  inverse  de la  direction du jet (cas d'une hémisphère , ou   des turbines Pelton ; et aussi  Banki )
Dans ce  cas notre valeur de  P est à multiplier par 2

Remarque :  On verrait sans peine que P est homogène à   M L2 T-3  

Jet sans choc 

Cette question est traitée avec les machines à action

Energie et Puissance

Certains visiteurs ne distinguent pas bien ces 2 notions
Une masse de 1 Kg située à 1000 m d'altitude a par rapport au niveau de la mer une énergie (potentielle) de
10000 joules
Si elle tombe au niveau zéro elle libère son énergie ; la chute non contrôlée conduit à une dégradation : l'énergie se perd en chaleur.
Mais on peut imaginer un système mécanique pour récupérer l'énergie , par exemple la chute sur une plaque (robuste ! ) fera remonter de 1 mètre une masse de 1000 Kg.

Si toutes les secondes une nouvelle masse suit la précédente et active une machine bien étudiée celle ci recevra une énergie de 10000 joules par seconde ce qui correspond à une puissance de 10000 watts
1 watt = 1 joule par seconde
On suppose dans tous les cas que le rendement est parfait ce qui est loin de la vérité car la résistance de l'air fausse le calcul.

Revenons à notre énergie de 10000 joules
Elle équivaut à 10000/4.18 =2392 calories (petites) soit 2.392 Kcalories
1 Kg de charbon de bonne qualité a une énergie interne de 8000 Kcalories 
Si on le brûle dans une centrale thermique et si on transforme la chaleur en énergie mécanique avec un rendement de 30% on récupère 2400 Kcalories soit l'équivalent de 3 Kwh environ.
En fait il faut déjà une centrale performante pour arriver à ce résultat : chaudière à haute pression , condenseur.
L'énergie nucléaire est convertie en énergie électrique  avec un rendement de cet ordre.
Les locomotives à vapeur avaient un rendement de 5% à peine !

Théorème de Bernoulli 

Ce  théorème essentiel découvert par Bernoulli (1700 - 1782)  nous montre que l'énergie spécifique  par unité de poids d'un fluide non visqueux (pour nous ,  de l'eau ) dans un écoulement sans pertes de charges est constante

P + H + (V  * V / 2 / g) = constante

P : pression  du fluide évaluée en mètres d'eau 
Si la pression est en Pascals il faut remplacer P par P /
v  , v étant le poids spécifique en Newton par M3.soit 10000 pour l'eau

H hauteur du point d'observation considéré par rapport à un niveau de référence arbitraire mais fixe .

V vitesse du fluide en mètres par seconde

Equation d ' Euler

Bien que cette équation soit un peu abstraite je la donne pour mes lecteurs habitués à ce genre de raisonnement
Elle n'est pas indispensable pour comprendre les machines
Considérons une masse de fluide circulant entre 2 aubes d'une turbine , donc entre l'entrée et la sortie
Nous avons pu voir à propos de certaines machines , la roue au dessus par exemple, comment se présentaient les triangles de vitesse .
Nous allons considérer les variables d'entrée et de sortie
L'indice 0 sera pour l'entrée et l'indice 1 pour la sortie
V désigne la vitesse absolue de l'eau
U sa vitesse d'entraînement (de par la rotation de la roue)
W sa vitesse relative qui d'ailleurs n'intervient pas dans la formule
Un la composante de la vitesse absolue selon la vitesse d'entraînement (en fait c'est la vitesse giratoire de l'eau )
La formule est

Heff = (U0 * V0N - U1 * V1n) / g                C'est une des équations  d' Euler

Heff est la hauteur de chute récupérée par la roue en mètres
Les autres variables sont en m/s
Le nombre d'aubes est supposé infini et le liquide , parfait ,  c.a.d. sans viscosité.

Pour que la relation soit applicable sans pertes de l'entrée à la sortie , il faut un écoulement sans décollements tout le long des surfaces .

Cette condition demande qu'en chaque point de l'aube ; la vitesse relative soit tangente à la surface de l'aube
 , condition difficile à remplir d'ou la difficulté d'un bon tracé des aubes .
Par ailleurs la formule exacte suppose le nombre d'aubes infini

Cette relation n'est pas applicable aux roues verticales qui n'ont pas à proprement parler de bord d'entrée et de bord de sortie , mais elle s'applique bien aux roues horizontales;

Pertes de charge

Tout fluide qui circule à l'air libre ou en canalisation subit une dégradation d'énergie appelée perte de charge.
Cette perte existe dans les lignes droites (dues à la rugosité et au frottement) , elle est très accentuée par les changements de direction , les variations de section.....
Il est d'usage d'affecter à ces pertes , locales notamment , un coefficient par rapport à la quantité connue : V * V *2 *g
Ce coefficient est souvent désigné par la lettre
x
Ces coefficients ont été étudiés le plus souvent expérimentalement. et de nombreux facteurs interviennent notamment les diamètres et l'état des parois.
Pour le moment je dois renvoyer le lecteur à des formulaires , car la
nature des parois  le diamètre et la nature de  "l'obstacle" compliquent le problème.

A titre d'exemple , je montre dans cette image les coefficients à appliquer au départ ou à l'arrivée d'une conduite dans de larges réservoirs

Ces coefficients sont à multiplier par la quantité V*V/(2*g) ce qui suppose que la vitesse a pu être calculée



Le produit obtenu est évidemment en mètres d'eau

Pour des coudes à 90° non brusques la valeur de
x est de l'ordre de 0.3 mais attention cette valeur ne peut être utilisée dans un calcul sérieux , ici elle est indicative

Pertes de charge dans les canaux

formule de Manning
jp = 1000 * V * V * NdeMani * NdeMani * (Rh ^ (-4 / 3))
jp = perte de charge mm/m
V vitesse de l'eau m/s
Ndemani coeficient de manning 
voir la table
attention ne pas confondre avec le coeff de Strickler qui est son inverse

Rh rayon hydraulique = surface mouillée / périmètre mouillé


Formule de Bazin  
soit A =1000 * (1-
g / Rh^0.5) ^2 
et 

B= (87)^2 * Rh

jp = A/B

g varie de 0.06 (lisse) à 1.75 (très rugueux)


Modèles

Ce paragraphe concerne uniquement les utilisateurs de mon logiciel

3 Modèles hydrauliques d'écoulement dans une conduite en charge ont été crées avec un maximum (?) d'explications

L' écoulement dans une conduite en charge étant un peu plus difficile à saisir que celui d'un canal à l'air libre

Puissance mécanique d'un jet 

La puissance mécanique d'un jet d'eau est l'énergie par seconde contenue dans ce jet
Elle dépend de la vitesse et du débit
Pm =0.5 * Q *
r *V *V  = 0.5 * S *V*V*V * r
  r étant  la masse spécifique de l'eau en kg/m3 soit 1000
Q  est le débit en m3 par seconde
S est la section du jet  en m2 
V est en m/sec        Pm en watts



Obstacle dans un fluide en mouvement

Tout obstacle dans un écoulement reçoit une réaction de la part du fluide.
La force exercée dans le sens du courant porte le nom de traînée.

La force exercée perpendiculairement au sens du courant porte le nom de portance 
On utilise ces propriétés en aérodynamique ; une aile d'avion se comporte de cette façon en mouvement relatif ; on cherche alors des profils de grande finesse : grande portance , faible traînée.

Une plaque totalement en travers du courant agit de façon strictement opposée : la portance est nulle , la traînée considérable.
Ainsi une plaque assez mince reçoit dans l'eau une poussée (traînée) évaluée à :

F =600 * S * V *V 
F en Newtons
S en m2
V en m/s

Si la plaque recule à une vitesse v , la formule devient 
F =600 * S * (V-v)^2 
Elle reçoit une énergie W=F*v exprimée en watts


Il faut noter que les interactions sont identiques , que le fluide soit en mouvement et  l ' obstacle immobile  , ou l'inverse

Ecoulement laminaire
Type d'écoulement peu rapide dans lequel les pertes de charge le long des parois (canaux , conduites) sont proportionnelles à la vitesse de l'eau
Ce type d'écoulement ne se rencontre guère dans les machines hydrauliques , sauf éventuellement dans la roue Sagebien

Ecoulement turbulent
Type d'écoulement rapide dans lequel les pertes de charge le long des parois (canaux , conduites) sont proportionnelles au carré de la vitesse de l'eau

La différence entre les 2 formes est fonction d'un nombre appelé nombre
de Reynolds ou interviennent vitesse , dimensions, viscosité

Le nombre de Reynolds est défini par 
R = U * D / n
U vitesse de l'eau en m/s
D diamètre de la conduite en m
Dans le cas d'un écoulement à l'air libre (canal) on prend D = 4 fois le rayon hydraulique
 
n coefficient de viscosité cinématique en métres carrés par seconde
Pour l'eau à 15°  
n = 1.15 *10^*6 = 0.00000115  m2/s
Exemple D=0.1 m     U= 0.2 m/s
R = 1000000 * 0.1 * 0.2 / 1.15 = 20000/1.15 = 17400 env.
Cette valeur caractérise un écoulement très turbulent
On démontre que la valeur limite est 2500 pour R ce qui suppose que le produit U*D soit < à 0.0028
Il en résulte que les écoulements laminaires seront dans notre étude    rarissimes

Ecoulement torrentiel

Un écoulement  de type torrentiel est celui que l'on trouve au pied d'une vanne ouverte suivie d'une pente  , par exemple.
Ce type d'écoulement , à grande vitesse , ne peut se maintenir que si la pente du radier a une certaine valeur minimale, dite pente critique (torrents de montagne).
Dans ce type d'écoulement  , la valeur du terme v * v / 2g a une valeur importante .
Si la pente devient  insuffisante , il y a ressaut ..
Après le ressaut ; il y a eu une  perte considérable  d'énergie.

Le contraire de l'écoulement torrentiel est l'écoulement fluvial
On perle aussi de subcritique (fluvial) et supercritique (torrentiel)

Ne pa confondre avec les formes laminaires et turbulentes

Puissance et couple

Quand l'énergie mécanique est "rotative" et non plus "linéaire" le produit Force * vitesse est remplacé généralement par Couple * Vitesse angulaire
P = C *
w    Ne pas confondre  v et w
P en watts
C en mN
w en radians par seconde :   (w = 2 * p * N / 60) ,  N en T/min

Exemple "linéaire rotatif"
Une voiture dont le moteur développe effectivement 50 CV et dont la vitesse est 36 m/s (130 km/h) doit vaincre  une résistance de 1022 Newtons (surtout résistance de l'air , en gros équivalente à celle d'une plaque plane de 1/2 m2)
Si le moteur tourne à 5000 T/min il doit produire  un couple de 70.28 mN (avec rendement 1 pour la transmission)
Autre  exemple une assez grosse visseuse qui doit vaincre un couple de 10 mN en tournant à 1 t/sec
consomme une puissance mécanique de 62.8 watts

10mN : une masse de 1 kg qu'il faut soulever au bout d' un bras de levier de 1 m
Vérifiez ces formules si voulez vous familiariser avec ces notions

Diamètre d'un arbre 



K=96 à 120 selon la sécurité désirée
P en CV
N en t/min
D en mm
(Formule d'avant projet)

Epaisseur d'une conduite forcée

Attention : la formule suivante ne vérifie pas toutes les contraintes auxquelles sont soumises les conduites et notamment:
Les flexions longitudinale et latérale
L'apparition fortuite d'une forte dépression intérieure (vide)

La formule donne donc une valeur indicative qui demande d'autres vérifications

Cette formule pour un métal homogène sans trous de perçage (rivets..) est

e =10 * P * D / (2 * R)

Attention aux unités qui ne sont pas homogènes pour des raisons de pratique courante

e est en mm avec minimum de 1

P est la pression max (y compris coups de bélier) en bars
D est le diamètre en mètres .
R est le taux de travail en daN/mm2 du métal généralement pris au 1/5 de la charge de rupture
soit pour l'acier soudé  8 daN/mm2

Parlons un peu du Choc

Retour page d'accueil

Notes memo
Dans notre présentation nous utilisons presque exclusivement les unités du système international S.I.
Les  unités fondamentales sont entre autres
Le Kilo pour la masse
Le mètre pour la longueur
La seconde pour le temps
Le Newton pour la force ou le poids

Une masse de 1 kg a un poids de 9.81 N sur notre planète.
1 Newton * 1 mètre = 1 joule unité de travail ou énergie
C'est le travail d'une force de 1 Newton se déplaçant de 1 m  dans sa propre direction
1  joule/sec = 1 watt   

1 Wh =3600
joules
 1 Kw= 1000 W = 1000  joules/sec

 1 Kwh= 1000 Wh  = 3600000 joules = 861244 petites calories = 861 Kcalorie
1 Kcalorie= 4180 joules
1  Kcalorie permet d'élever de 1° C la température d'une masse d'eau de 1 kilo
Ainsi pour réchauffer de 20° à 70° l'eau d'un chauffe eau de 150 litres il faut lui apporter
150 * 50 =7500 Kcalories ce qui correspond à 8.7 Kwh (1 Kw pendant 9 heures env.)
Attention à ne pas confondre calorie et Kcalorie , car le langage courant désigne souvent par calorie la Kcalorie que l'on appelait encore auparavant grande calorie.
Ainsi quand on parle de calories pour les besoins énergétiques d'un être humain , ou pour les déperditions thermiques d'une pièce , il s'agit de Kcalories.

1 kilogrammètre (anciennes unités) = 9.81 joules 
1 kilogrammètre/seconde (anciennes unités) = 9.81 watts 
 Bien que commode à utiliser , la  Thermie n'est pas une unité légale elle vaut 1000 Kcalories , elle est très utilisée par les pétroliers.
Unité de pression
 Pascal (Pa) = 1 Newton/m2
 Le  Pascal est une unité très petite :  1 atmosphère = 1 Bar = 100000 Pascals

Unité de Couple
1 mètre  *  1 Newton = 1 Métre-Newton (mN)  : Couple 
Le Couple * par la vitesse angulaire donne la puissance

Unités spécifiques de l'eau
r masse en kg de 1 m3 d'eau soit 1000
v : poids en newtons de 1 m3 d'eau soit 9810 (souvent arrondi à 10000)


g : accélération de la pesanteur terrestre : 9.81 m/s/s

Retour page d'accueil

a b c d e  g h j i b k l m n o p q r s t u  v w  x y z